Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Environ Res ; : 118942, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38649012

ABSTRACT

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289 564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5µg/m3, BC (1.26 (1.03-1.53) per 0.5×10- 5/m), NO2 (1.13 (0.93-1.38) per 10µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.

2.
PNAS Nexus ; 3(3): pgae088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456174

ABSTRACT

High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM2.5) pollution in India. We developed a model for daily average ambient PM2.5 between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an R2 of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 µg/m3 (interquartile range: 29.8-46.8) in 2008 and 30.4 µg/m3 (interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)-R2 of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 µg/m3. We obtained high spatial accuracy with spatial R2 greater than 90% and spatial MAE ranging between 7.3-16.5 µg/m3 with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM2.5 at a very fine spatiotemporal resolution, which allows us to study the health effects of PM2.5 across India and to identify areas with exceedingly high levels.

3.
Environ Int ; 184: 108461, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38340402

ABSTRACT

BACKGROUND: Heatwaves are expected to increase with climate change, posing a significant threat to population health. In India, with the world's largest population, heatwaves occur annually but have not been comprehensively studied. Accordingly, we evaluated the association between heatwaves and all-cause mortality and quantifying the attributable mortality fraction in India. METHODS: We obtained all-cause mortality counts for ten cities in India (2008-2019) and estimated daily mean temperatures from satellite data. Our main extreme heatwave was defined as two-consecutive days with an intensity above the 97th annual percentile. We estimated city-specific heatwave associations through generalised additive Poisson regression models, and meta-analysed the associations. We reported effects as the percentage change in daily mortality, with 95% confidence intervals (CI), comparing heatwave vs non-heatwave days. We further evaluated heatwaves using different percentiles (95th, 97th, 99th) for one, two, three and five-consecutive days. We also evaluated the influence of heatwave duration, intensity and timing in the summer season on heatwave mortality, and estimated the number of heatwave-related deaths. FINDINGS: Among âˆ¼ 3.6 million deaths, we observed that temperatures above 97th percentile for 2-consecutive days was associated with a 14.7 % (95 %CI, 10.3; 19.3) increase in daily mortality. Alternative heatwave definitions with higher percentiles and longer duration resulted in stronger relative risks. Furthermore, we observed stronger associations between heatwaves and mortality with higher heatwave intensity. We estimated that around 1116 deaths annually (95 %CI, 861; 1361) were attributed to heatwaves. Shorter and less intense definitions of heatwaves resulted in a higher estimated burden of heatwave-related deaths. CONCLUSIONS: We found strong evidence of heatwave impacts on daily mortality. Longer and more intense heatwaves were linked to an increased mortality risk, however, resulted in a lower burden of heatwave-related deaths. Both definitions and the burden associated with each heatwave definition should be incorporated into planning and decision-making processes for policymakers.


Subject(s)
Hot Temperature , Mortality , Cities , Risk , Temperature , India/epidemiology
4.
Environ Pollut ; 343: 123097, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38065336

ABSTRACT

Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 µg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Leukemia , Lymphoma , Adult , Female , Humans , Male , Nitrogen Dioxide/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Environmental Pollutants/analysis , Leukemia/chemically induced , Leukemia/epidemiology , Lymphoma/chemically induced , Lymphoma/epidemiology , Potassium/analysis , Air Pollutants/analysis
5.
J Am Heart Assoc ; 12(21): e030456, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37818697

ABSTRACT

Background Air pollution is one of the main risk factors for cardiovascular disease globally, but its association with out-of-hospital cardiac arrest at low air pollution levels is unclear. This nationwide study in Sweden aims to investigate if air pollution is associated with a higher risk of out-of-hospital cardiac arrest in an area with relatively low air pollution levels. Methods and Results This study was a nationwide time-stratified case-crossover study investigating the association between short-term air pollution exposures and out-of-hospital cardiac arrest using data from the SRCR (Swedish Registry for Cardiopulmonary Resuscitation) between 2009 and 2019. Daily air pollution levels were estimated in 1×1-km grids for all of Sweden using a satellite-based machine learning model. The association between daily air pollutant levels and out-of-hospital cardiac arrest was quantified using conditional logistic regression adjusted for daily air temperature. Particulate matter <2.5 µm exposure was associated with a higher risk of out-of-hospital cardiac arrest among a total of 29 604 cases. In a multipollutant model, the association was most pronounced for intermediate daily lags, with an increased relative risk of 6.2% (95% CI, 1.0-11.8) per 10 µg/m3 increase of particulate matter <2.5 µm 4 days before the event. A similar pattern of association was observed for particulate matter <10 µm. No clear association was observed for O3 and NO2. Conclusions Short-term exposure to air pollution was associated with higher risk of out-of-hospital cardiac arrest. The findings add to the evidence of an adverse effect of particulate matter on out-of-hospital cardiac arrest, even at very low levels below current regulatory standards.


Subject(s)
Air Pollutants , Air Pollution , Out-of-Hospital Cardiac Arrest , Humans , Cross-Over Studies , Sweden , Air Pollution/adverse effects , Air Pollutants/adverse effects , Particulate Matter/adverse effects , Risk Factors , Environmental Exposure/adverse effects
7.
Environ Int ; 179: 108136, 2023 09.
Article in English | MEDLINE | ID: mdl-37598594

ABSTRACT

INTRODUCTION: The complex interplay of multiple environmental factors and cardiovascular has scarcely been studied. Within the EXPANSE project, we evaluated the association between long-term exposure to multiple environmental indices and stroke incidence across Europe. METHODS: Participants from three traditional adult cohorts (Germany, Netherlands and Sweden) and four administrative cohorts (Catalonia [region Spain], Rome [city-wide], Greece and Sweden [nationwide]) were followed until incident stroke, death, migration, loss of follow-up or study end. We estimated exposures at residential addresses from different exposure domains: air pollution (nitrogen dioxide (NO2), particulate matter < 2.5 µm (PM2.5), black carbon (BC), ozone), built environment (green/blue spaces, impervious surfaces) and meteorology (seasonal mean and standard deviation of temperatures). Associations between environmental exposures and stroke were estimated in single and multiple-exposure Cox proportional hazard models, and Principal Component (PC) Analyses derived prototypes for specific exposures domains. We carried out random effects meta-analyses by cohort type. RESULTS: In over 15 million participants, increased levels of NO2 and BC were associated with increased higher stroke incidence in both cohort types. Increased Normalized Difference Vegetation Index (NDVI) was associated with a lower stroke incidence in both cohort types, whereas an increase in impervious surface was associated with an increase in stroke incidence. The first PC of the air pollution domain (PM2.5, NO2 and BC) was associated with an increase in stroke incidence. For the built environment, higher levels of NDVI and lower levels of impervious surfaces were associated with a protective effect [%change in HR per 1 unit = -2.0 (95 %CI, -5.9;2.0) and -1.1(95 %CI, -2.0; -0.3) for traditional adult and administrative cohorts, respectively]. No clear patterns were observed for distance to blue spaces or temperature parameters. CONCLUSIONS: We observed increased HRs for stroke with exposure to PM2.5, NO2 and BC, lower levels of greenness and higher impervious surface in single and combined exposure models.


Subject(s)
Air Pollution , Stroke , Adult , Humans , Air Pollution/adverse effects , Built Environment , Europe/epidemiology , Incidence , Nitrogen Dioxide/adverse effects , Stroke/epidemiology , Temperature
8.
Environ Pollut ; 336: 122394, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37597733

ABSTRACT

Although emerging research has investigated the relationship between outdoor air pollution and depression risk in older adults, the results remain inconclusive. We aimed to determine the relationship between long-term exposure to ambient air pollution and depression among older adults and explore whether active social engagement may modify this association. At baseline (2001-2004), 2812 depression-free older adults from Swedish National Study on Aging and Care in Kungsholmen (SNAC-K) were included. SNAC-K is a longitudinal population-based cohort in Stockholm, Sweden. Incident depression cases occurred during 2004-2013 were ascertained using the Diagnostic and Statistical Manual of Mental Disorders 4th Edition. Air pollution [particulate matter (PM) and nitrogen oxides (NOx)] at the residency were estimated using dispersion models. Social engagement was measured as active participation in social activities (at least twice/week) or inactive (less than twice/week) in the last 12 months. The hazard ratios (HR) and 95% confidence intervals of depression from air pollution exposure of 3-year moving average before diagnosis (1-µg/m3 difference in PM2.5 and PM10, and 10-µg/m3 difference in NOx) were obtained from Cox models considering greenspace and noise. A product term of air pollutant and social activity was added to test the multiplicative interaction and attributable proportion due to interaction was calculated for assessing additive interaction. We identified 137 (4.9%) incident depression cases. Participants exposed to higher concentrations of PM2.5, NOx, and PM10 had 53% (HR:1.53 [1.22, 1.93]), 26% (HR:1.26 [1.01, 1.58]), and 7% (HR:1.07 [0.98, 1.18]) increased hazard of depression, respectively. These associations were largely attenuated in people with active social engagement (HR for PM2.5: 1.04 [0.70, 1.55]; HR for PM10: 0.98 [0.81, 1.18]; and HR for NOx: 1.09 [0.71, 1.66]). Our findings suggest long-term exposure to air pollution may be a risk factor for depression among older adults. An active social engagement might however decrease this risk.

9.
BMJ Open ; 13(7): e072582, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438074

ABSTRACT

OBJECTIVES: Studies on health effects of tobacco often rely on self-reported exposure data, which is subjective and can lead to misclassification. The aim of this study was to describe the prevalence of cigarette smoking, snus and e-cigarette use, as well as to validate self-reported tobacco use among young adults in Sweden. METHOD: Participants of a population-based Swedish cohort (n=3052), aged 22-25 years, assessed their tobacco use in a web questionnaire. Urinary cotinine was analysed in a subsample of the study population (n=998). The agreement between self-reported tobacco use and urinary cotinine was assessed using Cohen's Kappa coefficient (κ) at a cut-off level of 50 ng/mL. RESULTS: Patterns of tobacco use differed between men and women. Among men, 20.0% reported daily snus use, 5.8% daily cigarette smoking and 5.6% any e-cigarette use. In contrast, 3.2% of the women reported daily snus use, 9.0% daily cigarette smoking and 2.4% any e-cigarette use. Among the tobacco use categories, daily snus users had the highest levels of cotinine. Of reported non-tobacco users, 3.5% had cotinine levels above the cut-off, compared with 68.0% among both occasional cigarette smokers and snus users, 67.5% among all e-cigarette users and 94.7% and 97.8% among daily cigarette smokers and snus users, respectively. Agreement between self-reported tobacco use and urinary cotinine was classified as strong for daily use of cigarettes (κ=0.824) and snus (κ=0.861), while moderate to weak for occasional smoking (κ=0.618), occasional snus use (κ=0.573) and any e-cigarette use (κ=0.576). CONCLUSIONS: We found high validity of self-reported tobacco use in our study population, particularly for daily tobacco use. Further, we found that daily snus users were exposed to high levels of cotinine. Together with previous findings, our results indicate good validity of self-reported tobacco use among young adults.


Subject(s)
Cotinine , Electronic Nicotine Delivery Systems , Male , Humans , Female , Young Adult , Self Report , Sweden/epidemiology , Birth Cohort , Tobacco Use/epidemiology
10.
Neurology ; 101(12): e1231-e1240, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37442622

ABSTRACT

BACKGROUND AND OBJECTIVES: Growing evidence links air pollution with dementia risk, but the biological mechanisms are largely unknown. We investigated the role played by homocysteine (tHcy) and methionine in this association and explored whether this could be explained by cardiovascular diseases (CVDs). METHODS: Data were extracted from the ongoing Swedish National study on Aging and Care in Kungsholmen (SNAC-K), a longitudinal population-based study. At baseline, 2,512 dementia-free participants were examined up to 2013 (mean follow-up: 5.18 ± 2.96 years). Two air pollutants (particulate matter ≤2.5 µm [PM2.5] and nitrogen oxides [NOx]) were assessed yearly from 1990 until 2013 using dispersion models at residential addresses. The hazard ratio of dementia over air pollution levels was estimated using Cox models adjusted for age, sex, education, smoking, socioeconomic status, physical activity, retirement age, creatinine, year of assessment, and the use of supplements. The total effect of air pollutants on dementia was decomposed into 4 pathways involving tHcy/methionine: (1) direct effect; (2) indirect effect (mediation); (3) effect due to interaction; and (4) effect due to both mediation and interaction. To test whether the association was independent from CVDs (ischemic heart disease, atrial fibrillation, heart failure, and stroke), we repeated the analyses excluding those individuals who developed CVDs. RESULTS: The mean age of the study participants was 73.4 years (SD: 10.4), and 62.1% were female individuals. During an average period of 5 years (mean: 5.18; SD: 2.96 years), 376 cases with incident dementia were identified. There was a 70% increased hazard of dementia per unit increase of PM2.5 during the 5 years before baseline (hazard ratio [HR]: 1.71; 95% CI 1.33-2.09). Overall, 50% (51.6%; 95% CI 9.0-94.1) of the total effect of PM2.5 on dementia was due to mediation of tHcy (6.6%; 95% CI 1.6-11.6) and/or interaction (47.8%; 95% CI 4.9-91.7) with tHcy and 48.4% (p = 0.03) to the direct effect of PM2.5 on dementia. High levels of methionine reduced the dementia hazard linked to PM2.5 by 31% (HR: 0.69; 95% CI 0.56-0.85) with 24.8% attributable to the interaction with methionine and 25.9% (p = 0.001) to the direct effect of PM2.5. No mediation effect was found through methionine. Attenuated results were obtained for NOx. Findings for tHcy were attenuated after excluding those who developed CVDs, while remained similar for methionine. DISCUSSION: High levels of homocysteine enhanced the dementia risk attributed to air pollution, while high methionine concentrations reduced this risk. The impact of homocysteine on cardiovascular conditions partly explains this association. Alternative pathways other than cardiovascular mechanisms may be at play between methionine and dementia.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Humans , Female , Aged , Male , Methionine/analysis , Homocysteine , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Air Pollutants/adverse effects , Particulate Matter/adverse effects , Cardiovascular Diseases/epidemiology , Racemethionine
11.
Scand J Work Environ Health ; 49(6): 439-448, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37436135

ABSTRACT

OBJECTIVES: This study aimed to evaluate effects of night and shift work patterns on type 2 diabetes (T2D) and hypertension in a longitudinal study, with detailed information on working hours. METHODS: The cohort comprised about 28 000 nurses and nursing assistants employed for more than one year 2008-2016 in Stockholm, Sweden. The employee register held detailed individual information on daily working hours. Information on diagnoses came from national and regional registers. Hazard ratios (HR) and confidence intervals (CI) were estimated by discrete-time proportional hazard models, adjusting for sex, age, country of birth, and profession. RESULTS: During follow-up in 2013-2017, we identified 232 cases of T2D and 875 of hypertension. We observed an increased risk of T2D, but not hypertension, among employees who worked only night shifts the previous year (HR 1.59, 95% CI 1.02-2.43) and those with intensive shift work (>120 afternoon and/or night shifts the previous year: HR 1.67, 95% CI 1.11-2.48) compared to only day work. There was a non-significantly increased risk of T2D related to mixed day and afternoon shifts (HR 1.34, 95% CI 0.97-1.88). We observed tendencies in increased risk of T2D related to frequent spells of ≥3 consecutive night shifts and with number of years with exclusive (but not mixed) night work. CONCLUSIONS: Permanent night work and frequent afternoon and/or night shifts were associated with an increased risk of T2D the following year, but not hypertension. The T2D risk was, to some extent, affected by frequent spells of several night shifts in a row and by cumulative years with permanent night work.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Shift Work Schedule , Humans , Diabetes Mellitus, Type 2/epidemiology , Shift Work Schedule/adverse effects , Work Schedule Tolerance , Risk Factors , Incidence , Prospective Studies , Longitudinal Studies , Hypertension/epidemiology , Delivery of Health Care
12.
Environ Int ; 178: 108108, 2023 08.
Article in English | MEDLINE | ID: mdl-37490787

ABSTRACT

BACKGROUND: Environmental noise is an important environmental exposure that can affect health. An association between transportation noise and breast cancer incidence has been suggested, although current evidence is limited. We investigated the pooled association between long-term exposure to transportation noise and breast cancer incidence. METHODS: Pooled data from eight Nordic cohorts provided a study population of 111,492 women. Road, railway, and aircraft noise were modelled at residential addresses. Breast cancer incidence (all, estrogen receptor (ER) positive, and ER negative) was derived from cancer registries. Hazard ratios (HR) were estimated using Cox Proportional Hazards Models, adjusting main models for sociodemographic and lifestyle variables together with long-term exposure to air pollution. RESULTS: A total of 93,859 women were included in the analyses, of whom 5,875 developed breast cancer. The median (5th-95th percentile) 5-year residential road traffic noise was 54.8 (40.0-67.8) dB Lden, and among those exposed, the median railway noise was 51.0 (41.2-65.8) dB Lden. We observed a pooled HR for breast cancer (95 % confidence interval (CI)) of 1.03 (0.99-1.06) per 10 dB increase in 5-year mean exposure to road traffic noise, and 1.03 (95 % CI: 0.96-1.11) for railway noise, after adjustment for lifestyle and sociodemographic covariates. HRs remained unchanged in analyses with further adjustment for PM2.5 and attenuated when adjusted for NO2 (HRs from 1.02 to 1.01), in analyses using the same sample. For aircraft noise, no association was observed. The associations did not vary by ER status for any noise source. In analyses using <60 dB as a cutoff, we found HRs of 1.08 (0.99-1.18) for road traffic and 1.19 (0.95-1.49) for railway noise. CONCLUSIONS: We found weak associations between road and railway noise and breast cancer risk. More high-quality prospective studies are needed, particularly among those exposed to railway and aircraft noise before conclusions regarding noise as a risk factor for breast cancer can be made.


Subject(s)
Breast Neoplasms , Noise, Transportation , Humans , Female , Noise, Transportation/adverse effects , Cohort Studies , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Risk Factors , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis
13.
Lancet Reg Health Eur ; 28: 100608, 2023 May.
Article in English | MEDLINE | ID: mdl-37131862

ABSTRACT

Background: Post COVID-19 conditions, also known as long COVID, are of public health concern, but little is known about their underlying risk factors. We aimed to investigate associations of air pollution exposure with long COVID among Swedish young adults. Methods: We used data from the BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology [in Swedish]) cohort. From October 2021 to February 2022 participants answered a web-questionnaire focusing on persistent symptoms following acute SARS-CoV-2 infection. Long COVID was defined as symptoms after confirmed infection with SARS-CoV-2 lasting for two months or longer. Ambient air pollution levels (particulate matter ≤2.5 µm [PM2.5], ≤10 µm [PM10], black carbon [BC] and nitrogen oxides [NOx]) at individual-level addresses were estimated using dispersion modelling. Findings: A total of 753 participants with SARS-CoV-2 infection were included of whom 116 (15.4%) reported having long COVID. The most common symptoms were altered smell/taste (n = 80, 10.6%), dyspnea (n = 36, 4.8%) and fatigue (n = 34, 4.5%). Median annual PM2.5 exposure in 2019 (pre-pandemic) was 6.39 (interquartile range [IQR] 6.06-6.71) µg/m3. Adjusted Odds Ratios (95% confidence intervals) of PM2.5 per IQR increase were 1.28 (1.02-1.60) for long COVID, 1.65 (1.09-2.50) for dyspnea symptoms and 1.29 (0.97-1.70) for altered smell/taste. Positive associations were found for the other air pollutants and remained consistent across sensitivity analyses. Associations tended to be stronger among participants with asthma, and those having had COVID during 2020 (versus 2021). Interpretation: Ambient long-term PM2.5 exposure may affect the risk of long COVID in young adults, supporting efforts for continuously improving air quality. Funding: The study received funding from the Swedish Research Council (grant no. 2020-01886, 2022-06340), the Swedish Research Council for Health, Working life and Welfare (FORTE grant no. 2017-01146), the Swedish Heart-Lung Foundation, Karolinska Institute (no. 2022-01807) and Region Stockholm (ALF project for cohort and database maintenance).

14.
Alzheimers Dement ; 19(12): 5541-5549, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37249150

ABSTRACT

INTRODUCTION: The independent and joint effect of ischemic heart disease (IHD) and coexisting atrial fibrillation (AF) and heart failure (HF) on dementia risk is largely unknown. METHODS: This population-based cohort study included 2568 dementia-free participants (age ≥60 years) in SNAC-K, who were regularly examined from 2001-2004 through 2013-2016. Dementia was diagnosed following the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) criteria. Global cognitive function was assessed using a global cognitive composite z-score derived from five cognitive domains. Data were analyzed using Cox, Fine-Gray, and linear mixed-effects models. RESULTS: Overall, IHD at baseline was associated with multivariable-adjusted hazard ratio (HR) of 1.39 (95% confidence interval = 1.06-1.82) for dementia and multivariable-adjusted ß-coefficient of -0.02 (-0.03 to -0.01) for annual changes in global cognitive z-score, independent of AF, HF, and cerebrovascular disease. Coexisting AF or HF did not add further risk to dementia and cognitive decline. DISCUSSION: IHD is independently associated with dementia and cognitive decline in older adults, whereas coexisting AF/HF is not associated with an increased risk. HIGHLIGHTS: Is a history of ischemic heart disease (IHD) associated with a risk for dementia? How do coexisting heart diseases affect this association? IHD was an independent risk factor for dementia in older adults. This association was independent of coexisting heart and cerebrovascular diseases. The coexistence of heart diseases did not confer additional risk for dementia.


Subject(s)
Atrial Fibrillation , Cerebrovascular Disorders , Cognitive Dysfunction , Dementia , Myocardial Ischemia , Humans , Aged , Middle Aged , Cohort Studies , Dementia/diagnosis , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/complications , Myocardial Ischemia/epidemiology , Myocardial Ischemia/complications , Atrial Fibrillation/diagnosis , Cerebrovascular Disorders/complications , Risk Factors
15.
BMC Public Health ; 23(1): 1026, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37259040

ABSTRACT

BACKGROUND: The COVID-19 pandemic has impacted on public health in several ways. The aim of the study was to investigate changes in lifestyle, adiposity, and cardiometabolic markers among young adults in Sweden during the COVID-19 pandemic and their determinants. METHODS: The study included 1 004 participants from the population-based birth cohort BAMSE. Anthropometrics, body composition (bioelectric impedance analyses), pulse, and blood pressure were measured before (December 2016-May 2019; mean age 22.6 years) and during (October 2020-June 2021; mean age 25.7 years) the COVID-19 pandemic. Lifestyle changes during the pandemic were assessed through a questionnaire. RESULTS: All measures of adiposity (weight, BMI, body fat percentage, trunk fat percentage) and cardiometabolic markers (blood pressure, pulse) increased during the study period (e.g., body fat percentage by a median of + 0.8% in females, p < 0.001, and + 1.5% in males, p < 0.001). Male sex, non-Scandinavian ethnicity, BMI status (underweight and obesity), and changes in lifestyle factors, e.g., decreased physical activity during the pandemic, were associated with higher increase in BMI and/or adiposity. CONCLUSION: Lifestyle factors, adiposity and cardiometabolic markers may have been adversely affected among young adults in Sweden during the COVID-19 pandemic compared with the preceding years. Targeted public health measures to reduce obesity and improve healthy lifestyle are important to prevent future non-communicable diseases.


Subject(s)
COVID-19 , Cardiovascular Diseases , Female , Male , Humans , Young Adult , Adult , Adiposity , Pandemics , Sweden/epidemiology , COVID-19/epidemiology , Obesity , Life Style , Cardiovascular Diseases/epidemiology , Body Mass Index , Risk Factors
17.
Environ Int ; 173: 107849, 2023 03.
Article in English | MEDLINE | ID: mdl-36889121

ABSTRACT

Residential relocation is increasingly used as a natural experiment in epidemiological studies to assess the health impact of changes in environmental exposures. Since the likelihood of relocation can be influenced by individual characteristics that also influence health, studies may be biased if the predictors of relocation are not appropriately accounted for. Using data from Swedish and Dutch adults (SDPP, AMIGO), and birth cohorts (BAMSE, PIAMA), we investigated factors associated with relocation and changes in multiple environmental exposures across life stages. We used logistic regression to identify baseline predictors of moving, including sociodemographic and household characteristics, health behaviors and health. We identified exposure clusters reflecting three domains of the urban exposome (air pollution, grey surface, and socioeconomic deprivation) and conducted multinomial logistic regression to identify predictors of exposome trajectories among movers. On average, 7 % of the participants relocated each year. Before relocating, movers were consistently exposed to higher levels of air pollution than non-movers. Predictors of moving differed between the adult and birth cohorts, highlighting the importance of life stages. In the adult cohorts, moving was associated with younger age, smoking, and lower education and was independent of cardio-respiratory health indicators (hypertension, BMI, asthma, COPD). Contrary to adult cohorts, higher parental education and household socioeconomic position were associated with a higher probability of relocation in birth cohorts, alongside being the first child and living in a multi-unit dwelling. Among movers in all cohorts, those with a higher socioeconomic position at baseline were more likely to move towards healthier levels of the urban exposome. We provide new insights into predictors of relocation and subsequent changes in multiple aspects of the urban exposome in four cohorts covering different life stages in Sweden and the Netherlands. These results inform strategies to limit bias due to residential self-selection in epidemiological studies using relocation as a natural experiment.


Subject(s)
Air Pollution , Exposome , Child , Adult , Humans , Environmental Exposure/analysis , Logistic Models , Birth Cohort
18.
Environ Res ; 224: 115454, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36764429

ABSTRACT

Background Colon cancer incidence is rising globally, and factors pertaining to urbanization have been proposed involved in this development. Traffic noise may increase colon cancer risk by causing sleep disturbance and stress, thereby inducing known colon cancer risk-factors, e.g. obesity, diabetes, physical inactivity, and alcohol consumption, but few studies have examined this. Objectives The objective of this study was to investigate the association between traffic noise and colon cancer (all, proximal, distal) in a pooled population of 11 Nordic cohorts, totaling 155,203 persons. Methods We identified residential address history and estimated road, railway, and aircraft noise, as well as air pollution, for all addresses, using similar exposure models across cohorts. Colon cancer cases were identified through national registries. We analyzed data using Cox Proportional Hazards Models, adjusting main models for harmonized sociodemographic and lifestyle data. Results During follow-up (median 18.8 years), 2757 colon cancer cases developed. We found a hazard ratio (HR) of 1.05 (95% confidence interval (CI): 0.99-1.10) per 10-dB higher 5-year mean time-weighted road traffic noise. In sub-type analyses, the association seemed confined to distal colon cancer: HR 1.06 (95% CI: 0.98-1.14). Railway and aircraft noise was not associated with colon cancer, albeit there was some indication in sub-type analyses that railway noise may also be associated with distal colon cancer. In interaction-analyses, the association between road traffic noise and colon cancer was strongest among obese persons and those with high NO2-exposure. Discussion A prominent study strength is the large population with harmonized data across eleven cohorts, and the complete address-history during follow-up. However, each cohort estimated noise independently, and only at the most exposed façade, which may introduce exposure misclassification. Despite this, the results of this pooled study suggest that traffic noise may be a risk factor for colon cancer, especially of distal origin.


Subject(s)
Air Pollution , Colonic Neoplasms , Noise, Transportation , Humans , Cohort Studies , Risk Factors , Environmental Exposure/analysis , Denmark/epidemiology
19.
Eur Respir J ; 61(5)2023 05.
Article in English | MEDLINE | ID: mdl-36822631

ABSTRACT

BACKGROUND: The beneficial effect of improving air quality on lung function development remains understudied. We assessed associations of changes in ambient air pollution levels with lung function growth from childhood until young adulthood in a Swedish cohort study. METHODS: In the prospective birth cohort BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology (in Swedish)), spirometry was conducted at the 8-year (2002-2004), 16-year (2011-2013) and 24-year (2016-2019) follow-ups. Participants with spirometry data at 8 years and at least one other measurement in subsequent follow-ups were included (1509 participants with 3837 spirometry measurements). Ambient air pollution levels (particulate matter with diameter ≤2.5 µm (PM2.5), particulate matter with diameter ≤10 µm (PM10), black carbon (BC) and nitrogen oxides (NO x )) at residential addresses were estimated using dispersion modelling. Linear mixed effect models were used to estimate associations between air pollution exposure change and lung function development. RESULTS: Overall, air pollution levels decreased progressively during the study period. For example, the median (interquartile range (IQR)) level of PM2.5 decreased from 8.24 (0.92) µg·m-3 during 2002-2004 to 5.21 (0.67) µg·m-3 during 2016-2019. At the individual level, for each IQR reduction of PM2.5 the lung function growth rate increased by 4.63 (95% CI 1.64-7.61) mL per year (p<0.001) for forced expiratory volume in 1 s and 9.38 (95% CI 4.76-14.00) mL per year (p<0.001) for forced vital capacity. Similar associations were also observed for reductions of BC and NO x . Associations persisted after adjustment for potential confounders and were not modified by asthma, allergic sensitisation, overweight, early-life air pollution exposure or dietary antioxidant intake. CONCLUSIONS: Long-term reduction of air pollution is associated with positive lung function development from childhood to young adulthood.


Subject(s)
Air Pollutants , Air Pollution , Child , Humans , Adolescent , Young Adult , Adult , Cohort Studies , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Lung , Air Pollutants/adverse effects , Air Pollutants/analysis
20.
Environ Health Perspect ; 131(1): 17003, 2023 01.
Article in English | MEDLINE | ID: mdl-36607286

ABSTRACT

BACKGROUND: Transportation noise may induce cardiovascular disease, but the public health implications are unclear. OBJECTIVES: The study aimed to assess exposure-response relationships for different transportation noise sources and ischemic heart disease (IHD), including subtypes. METHODS: Pooled analyses were performed of nine cohorts from Denmark and Sweden, together including 132,801 subjects. Time-weighted long-term exposure to road, railway, and aircraft noise, as well as air pollution, was estimated based on residential histories. Hazard ratios (HRs) were calculated using Cox proportional hazards models following adjustment for lifestyle and socioeconomic risk factors. RESULTS: A total of 22,459 incident cases of IHD were identified during follow-up from national patient and mortality registers, including 7,682 cases of myocardial infarction. The adjusted HR for IHD was 1.03 [95% confidence interval (CI) 1.00, 1.05] per 10 dB Lden for both road and railway noise exposure during 5 y prior to the event. Higher risks were indicated for IHD excluding angina pectoris cases, with HRs of 1.06 (95% CI: 1.03, 1.08) and 1.05 (95% CI: 1.01, 1.08) per 10 dB Lden for road and railway noise, respectively. Corresponding HRs for myocardial infarction were 1.02 (95% CI: 0.99, 1.05) and 1.04 (95% CI: 0.99, 1.08). Increased risks were observed for aircraft noise but without clear exposure-response relations. A threshold at around 55 dB Lden was suggested in the exposure-response relation for road traffic noise and IHD. DISCUSSION: Exposure to road, railway, and aircraft noise in the prior 5 y was associated with an increased risk of IHD, particularly after exclusion of angina pectoris cases, which are less well identified in the registries. https://doi.org/10.1289/EHP10745.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Noise, Transportation , Humans , Noise, Transportation/adverse effects , Environmental Exposure , Myocardial Ischemia/epidemiology , Myocardial Infarction/epidemiology , Angina Pectoris
SELECTION OF CITATIONS
SEARCH DETAIL
...